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Linear programming

Lecturer: Michel Goemans

1 Basics

Linear Programming deals with the problem of optimizing a linear objective function subject to
linear equality and inequality constraints on the decision variables. Linear programming has many
practical applications (in transportation, production planning, ...). It is also the building block for
combinatorial optimization. One aspect of linear programming which is often forgotten is the fact
that it is also a useful proof technique. In this first chapter, we describe some linear programming
formulations for some classical problems. We also show that linear programs can be expressed in a
variety of equivalent ways.

1.1 Formulations

1.1.1 The Diet Problem

In the diet model, a list of available foods is given together with the nutrient content and the cost
per unit weight of each food. A certain amount of each nutrient is required per day. For example,
here is the data corresponding to a civilization with just two types of grains (G1 and G2) and three
types of nutrients (starch, proteins, vitamins):

Starch Proteins Vitamins Cost ($/kg)

G1 5 4 2 0.6
G2 7 2 1 0.35

Nutrient content and cost per kg of food.

The requirement per day of starch, proteins and vitamins is 8, 15 and 3 respectively. The problem
is to find how much of each food to consume per day so as to get the required amount per day of
each nutrient at minimal cost.

When trying to formulate a problem as a linear program, the first step is to decide which
decision variables to use. These variables represent the unknowns in the problem. In the diet
problem, a very natural choice of decision variables is:

• x1: number of units of grain G1 to be consumed per day,

• x2: number of units of grain G2 to be consumed per day.

The next step is to write down the objective function. The objective function is the function to be
minimized or maximized. In this case, the objective is to minimize the total cost per day which is
given by z = 0.6x1 + 0.35x2 (the value of the objective function is often denoted by z).

Finally, we need to describe the different constraints that need to be satisfied by x1 and x2.
First of all, x1 and x2 must certainly satisfy x1 ≥ 0 and x2 ≥ 0. Only nonnegative amounts of
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food can be eaten! These constraints are referred to as nonnegativity constraints. Nonnegativity
constraints appear in most linear programs. Moreover, not all possible values for x1 and x2 give
rise to a diet with the required amounts of nutrients per day. The amount of starch in x1 units of
G1 and x2 units of G2 is 5x1 + 7x2 and this amount must be at least 8, the daily requirement of
starch. Therefore, x1 and x2 must satisfy 5x1 +7x2 ≥ 8. Similarly, the requirements on the amount
of proteins and vitamins imply the constraints 4x1 + 2x2 ≥ 15 and 2x1 + x2 ≥ 3.

This diet problem can therefore be formulated by the following linear program:

Minimize z = 0.6x1 + 0.35x2

subject to:

5x1 + 7x2 ≥ 8

4x1 + 2x2 ≥ 15

2x1 + x2 ≥ 3

x1 ≥ 0, x2 ≥ 0.

Some more terminology. A solution x = (x1, x2) is said to be feasible with respect to the above
linear program if it satisfies all the above constraints. The set of feasible solutions is called the
feasible space or feasible region. A feasible solution is optimal if its objective function value is equal
to the smallest value z can take over the feasible region.

1.1.2 The Transportation Problem

Suppose a company manufacturing widgets has two factories located at cities F1 and F2 and three
retail centers located at C1, C2 and C3. The monthly demand at the retail centers are (in thousands
of widgets) 8, 5 and 2 respectively while the monthly supply at the factories are 6 and 9 respectively.
Notice that the total supply equals the total demand. We are also given the cost of transportation
of 1 widget between any factory and any retail center.

C1 C2 C3

F1 5 5 3
F2 6 4 1

Cost of transportation (in 0.01$/widget).

In the transportation problem, the goal is to determine the quantity to be transported from each
factory to each retail center so as to meet the demand at minimum total shipping cost.

In order to formulate this problem as a linear program, we first choose the decision variables.
Let xij (i = 1, 2 and j = 1, 2, 3) be the number of widgets (in thousands) transported from factory
Fi to city Cj. Given these xij ’s, we can express the total shipping cost, i.e. the objective function
to be minimized, by

5x11 + 5x12 + 3x13 + 6x21 + 4x22 + x23.

We now need to write down the constraints. First, we have the nonnegativity constraints saying
that xij ≥ 0 for i = 1, 2 and j = 1, 2, 3. Moreover, we have that the demand at each retail center
must be met. This gives rise to the following constraints:

x11 + x21 = 8,

LP-2



x12 + x22 = 5,

x13 + x23 = 2.

Finally, each factory cannot ship more than its supply, resulting in the following constraints:

x11 + x12 + x13 ≤ 6,

x21 + x22 + x23 ≤ 9.

These inequalities can be replaced by equalities since the total supply is equal to the total demand.
A linear programming formulation of this transportation problem is therefore given by:

Minimize 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + x23

subject to:

x11 + x21 = 8

x12 + x22 = 5

x13 + x23 = 2

x11 + x12 + x13 = 6

x21 + x22 + x23 = 9

x11 ≥ 0, x21 ≥ 0, x31 ≥ 0,

x12 ≥ 0, x22 ≥ 0, x32 ≥ 0.

Among these 5 equality constraints, one is redundant, i.e. it is implied by the other constraints
or, equivalently, it can be removed without modifying the feasible space. For example, by adding
the first 3 equalities and substracting the fourth equality we obtain the last equality. Similarly, by
adding the last 2 equalities and substracting the first two equalities we obtain the third one.

1.2 Representations of Linear Programs

A linear program can take many different forms. First, we have a minimization or a maximization
problem depending on whether the objective function is to be minimized or maximized. The
constraints can either be inequalities (≤ or ≥) or equalities. Some variables might be unrestricted
in sign (i.e. they can take positive or negative values; this is denoted by ≷ 0) while others might
be restricted to be nonnegative. A general linear program in the decision variables x1, . . . , xn is
therefore of the following form:

Maximize or Minimize z = c0 + c1x1 + . . .+ cnxn

subject to:

ai1x1 + ai2x2 + . . .+ ainxn

≤
≥
=
bi i = 1, . . . ,m

xj

{
≥ 0
≷ 0

j = 1, . . . , n.

The problem data in this linear program consists of cj (j = 0, . . . , n), bi (i = 1, . . . ,m) and aij
(i = 1, . . . ,m, j = 1, . . . , n). cj is referred to as the objective function coefficient of xj or, more
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simply, the cost coefficient of xj . bi is known as the right-hand-side (RHS) of equation i. Notice
that the constant term c0 can be omitted without affecting the set of optimal solutions.

A linear program is said to be in standard form if

• it is a maximization program,

• there are only equalities (no inequalities) and

• all variables are restricted to be nonnegative.

In matrix form, a linear program in standard form can be written as:

Max z = cTx

subject to:

Ax = b

x ≥ 0.

where

c =

 c1
...
cn

 , b =

 b1
...
bm

 , x =

 x1
...
xn


are column vectors, cT denote the transpose of the vector c, and A = [aij ] is the m × n matrix
whose i, j−element is aij .

Any linear program can in fact be transformed into an equivalent linear program in standard
form. Indeed,

• If the objective function is to minimize z = c1x1 + . . . + cnxn then we can simply maximize
z′ = −z = −c1x1 − . . .− cnxn.

• If we have an inequality constraint ai1x1 + . . .+ ainxn ≤ bi then we can transform it into an
equality constraint by adding a slack variable, say s, restricted to be nonnegative: ai1x1 +
. . .+ ainxn + s = bi and s ≥ 0.

• Similarly, if we have an inequality constraint ai1x1 + . . .+ainxn ≥ bi then we can transform it
into an equality constraint by adding a surplus variable, say s, restricted to be nonnegative:
ai1x1 + . . .+ ainxn − s = bi and s ≥ 0.

• If xj is unrestricted in sign then we can introduce two new decision variables x+
j and x−j

restricted to be nonnegative and replace every occurrence of xj by x+
j − x

−
j .

For example, the linear program

Minimize z = 2x1 − x2

subject to:

x1 + x2 ≥ 2

3x1 + 2x2 ≤ 4

x1 + 2x2 = 3

x1 ≷ 0, x2 ≥ 0.
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is equivalent to the linear program

Maximize z′ = −2x+
1 + 2x−1 + x2

subject to:

x+
1 − x

−
1 + x2 − x3 = 2

3x+
1 − 3x−1 + 2x2 + x4 = 4

x+
1 − x

−
1 + 2x2 = 3

x+
1 ≥ 0, x−1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

with decision variables x+
1 , x

−
1 , x2, x3, x4. Notice that we have introduced different slack or surplus

variables into different constraints.
In some cases, another form of linear program is used. A linear program is in canonical form if

it is of the form:

Max z = cTx

subject to:

Ax ≤ b
x ≥ 0.

A linear program in canonical form can be replaced by a linear program in standard form by just
replacing Ax ≤ b by Ax + Is = b, s ≥ 0 where s is a vector of slack variables and I is the m ×m
identity matrix. Similarly, a linear program in standard form can be replaced by a linear program

in canonical form by replacing Ax = b by A′x ≤ b′ where A′ =

[
A
−A

]
and b′ =

(
b
−b

)
.

2 The Simplex Method

In 1947, George B. Dantzig developed a technique to solve linear programs — this technique is
referred to as the simplex method.

2.1 Brief Review of Some Linear Algebra

Two systems of equations Ax = b and Āx = b̄ are said to be equivalent if {x : Ax = b} = {x :
Āx = b̄}. Let Ei denote equation i of the system Ax = b, i.e. ai1x1 + . . . + ainxn = bi. Given a
system Ax = b, an elementary row operation consists in replacing Ei either by αEi where α is a
nonzero scalar or by Ei + βEk for some k 6= i. Clearly, if Āx = b̄ is obtained from Ax = b by an
elementary row operation then the two systems are equivalent. (Exercise: prove this.) Notice also
that an elementary row operation is reversible.

Let ars be a nonzero element of A. A pivot on ars consists of performing the following sequence
of elementary row operations:

• replacing Er by Ēr = 1
ars
Er,

• for i = 1, . . . ,m, i 6= r, replacing Ei by Ēi = Ei − aisĒr = Ei − ais
ars
Er.
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After pivoting on ars, all coefficients in column s are equal to 0 except the one in row r which is
now equal to 1. Since a pivot consists of elementary row operations, the resulting system Āx = b̄
is equivalent to the original system.

Elementary row operations and pivots can also be defined in terms of matrices. Let P be an
m×m invertible (i.e. P−1 exists1) matrix. Then {x : Ax = b} = {x : PAx = Pb}. The two types
of elementary row operations correspond to the matrices (the coefficients not represented are equal
to 0):

P =



1
. . .

1
α

1
. . .

1


← i and P =



1
. . .

1 β
. . .

1
. . .

1


← i

← k
.

Pivoting on ars corresponds to premultiplying Ax = b by

P =



1 −a1s/ars
. . .

1 −ar−1,s/ars
1/ars

−ar+1,s/ars 1
. . .

−ams/ars 1


← r.

2.2 The Simplex Method on an Example

For simplicity, we shall assume that we have a linear program of (what seems to be) a rather special
form (we shall see later on how to obtain such a form):

• the linear program is in standard form,

• b ≥ 0,

• there exists a collection B of m variables called a basis such that

– the submatrix AB of A consisting of the columns of A corresponding to the variables in
B is the m×m identity matrix and

– the cost coefficients corresponding to the variables in B are all equal to 0.

For example, the following linear program has this required form:

1This is equivalent to saying that detP 6= 0 or also that the system Px = 0 has x = 0 as unique solution
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Max z = 10 + 20 x1 + 16 x2 + 12 x3

subject to
x1 + x4 = 4

2 x1 + x2 + x3 +x5 = 10
2 x1 + 2x2 + x3 + x6 = 16
x1, x2, x3, x4, x5, x6 ≥ 0.

In this example, B = {x4, x5, x6}. The variables in B are called basic variables while the other
variables are called nonbasic. The set of nonbasic variables is denoted by N . In the example,
N = {x1, x2, x3}.

The advantage of having AB = I is that we can quickly infer the values of the basic variables
given the values of the nonbasic variables. For example, if we let x1 = 1, x2 = 2, x3 = 3, we obtain

x4 = 4− x1 = 3,

x5 = 10− 2x1 − x2 − x3 = 3,

x6 = 16− 2x1 − 2x2 − x3 = 7.

Also, we don’t need to know the values of the basic variables to evaluate the cost of the solution.
In this case, we have z = 10 + 20x1 + 16x2 + 12x3 = 98. Notice that there is no guarantee that
the so-constructed solution be feasible. For example, if we set x1 = 5, x2 = 2, x3 = 1, we have that
x4 = 4− x1 = −1 does not satisfy the nonnegativity constraint x4 ≥ 0.

There is an assignment of values to the nonbasic variables that needs special consideration. By
just letting all nonbasic variables to be equal to 0, we see that the values of the basic variables are
just given by the right-hand-sides of the constraints and the cost of the resulting solution is just
the constant term in the objective function. In our example, letting x1 = x2 = x3 = 0, we obtain
x4 = 4, x5 = 10, x6 = 16 and z = 10. Such a solution is called a basic feasible solution or bfs. The
feasibility of this solution comes from the fact that b ≥ 0. Later, we shall see that, when solving a
linear program, we can restrict our attention to basic feasible solutions. The simplex method is an
iterative method that generates a sequence of basic feasible solutions (corresponding to different
bases) and eventually stops when it has found an optimal basic feasible solution.

Instead of always writing explicitely these linear programs, we adopt what is known as the
tableau format. First, in order to have the objective function play a similar role as the other
constraints, we consider z to be a variable and the objective function as a constraint. Putting all
variables on the same side of the equality sign, we obtain:

−z + 20x1 + 16x2 + 12x3 = −10.

We also get rid of the variable names in the constraints to obtain the tableau format:
−z x1 x2 x3 x4 x5 x6

1 20 16 12 -10

1 0 0 1 4
2 1 1 1 10
2 2 1 1 16

Our bfs is currently x1 = 0, x2 = 0, x3 = 0, x4 = 4, x5 = 10, x6 = 16 and z = 10. Since the
cost coefficient c1 of x1 is positive (namely, it is equal to 20), we notice that we can increase z by
increasing x1 and keeping x2 and x3 at the value 0. But in order to maintain feasibility, we must
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have that x4 = 4−x1 ≥ 0, x5 = 10−2x1 ≥ 0, x6 = 16−2x1 ≥ 0. This implies that x1 ≤ 4. Letting
x1 = 4, x2 = 0, x3 = 0, we obtain x4 = 0, x5 = 2, x6 = 8 and z = 90. This solution is also a bfs and
corresponds to the basis B = {x1, x5, x6}. We say that x1 has entered the basis and, as a result, x4

has left the basis. We would like to emphasize that there is a unique basic solution associated with
any basis. This (not necessarily feasible) solution is obtained by setting the nonbasic variables to
zero and deducing the values of the basic variables from the m constraints.

Now we would like that our tableau reflects this change by showing the dependence of the new
basic variables as a function of the nonbasic variables. This can be accomplished by pivoting on the
element a11. Why a11? Well, we need to pivot on an element of column 1 because x1 is entering
the basis. Moreover, the choice of the row to pivot on is dictated by the variable which leaves the
basis. In this case, x4 is leaving the basis and the only 1 in column 4 is in row 1. After pivoting on
a11, we obtain the following tableau:
−z x1 x2 x3 x4 x5 x6

1 16 12 -20 -90

1 0 0 1 4
1 1 -2 1 2
2 1 -2 1 8

Notice that while pivoting we also modified the objective function row as if it was just like
another constraint. We have now a linear program which is equivalent to the original one from
which we can easily extract a (basic) feasible solution of value 90. Still z can be improved by
increasing xs for s = 2 or 3 since these variables have a positive cost coefficient2 c̄s. Let us choose
the one with the greatest c̄s; in our case x2 will enter the basis. The maximum value that x2 can
take while x3 and x4 remain at the value 0 is dictated by the constraints x1 = 4 ≥ 0, x5 = 2−x2 ≥ 0
and x6 = 8 − 2x2 ≥ 0. The tightest of these inequalities being x5 = 2 − x2 ≥ 0, we have that x5

will leave the basis. Therefore, pivoting on ā22, we obtain the tableau:
−z x1 x2 x3 x4 x5 x6

1 -4 12 -16 -122

1 0 1 0 4
1 1 -2 1 2

-1 2 -2 1 4

The current basis is B = {x1, x2, x6} and its value is 122. Since 12 > 0, we can improve
the current basic feasible solution by having x4 enter the basis. Instead of writing explicitely the
constraints on x4 to compute the level at which x4 can enter the basis, we perform the min ratio
test. If xs is the variable that is entering the basis, we compute

min
i:āis>0

{b̄i/āis}.

The argument of the minimum gives the variable that is exiting the basis. In our example, we
obtain 2 = min{4/1, 4/2} and therefore variable x6 which is the basic variable corresponding to
row 3 leaves the basis. Moreover, in order to get the updated tableau, we need to pivot on ā34.
Doing so, we obtain:

2By simplicity, we always denote the data corresponding to the current tableau by c̄, Ā, and b̄.

LP-8



−z x1 x2 x3 x4 x5 x6

1 2 -4 -6 -146

1 1/2 1 -1/2 2
1 0 -1 1 6

-1/2 1 -1 1/2 2

Our current basic feasible solution is x1 = 2, x2 = 6, x3 = 0, x4 = 2, x5 = 0, x6 = 0 with value
z = 146. By the way, why is this solution feasible? In other words, how do we know that the
right-hand-sides (RHS) of the constraints are guaranteed to be nonnegative? Well, this follows
from the min ratio test and the pivot operation. Indeed, when pivoting on ārs, we know that

• ārs > 0,

• b̄r
ārs
≤ b̄i

āis
if āis > 0.

After pivoting the new RHS satisfy

• b̄r = b̄r
ārs
≥ 0,

• b̄i = b̄i − āis
ārs
≥ b̄i ≥ 0 if āis ≤ 0 and

• b̄i = b̄i − āis
ārs

= āis

(
b̄i
āis
− b̄r

ārs

)
≥ 0 if āis > 0.

We can also justify why the solution keeps improving. Indeed, when we pivot on ārs > 0, the
constant term c̄0 in the objective function becomes c̄0 + b̄r ∗ c̄s/ārs. If b̄r > 0, we have a strict
improvement in the objective function value since by our choice of entering variable c̄s > 0. We
shall deal with the case b̄r = 0 later on.

The bfs corresponding to B = {1, 2, 4} is not optimal since there is still a positive cost coefficient.
We see that x3 can enter the basis and, since there is just one positive element in row 3, we have
that x1 leaves the basis. We thus pivot on ā13 and obtain:
−z x1 x2 x3 x4 x5 x6

1 -4 -8 -4 -154

2 1 2 -1 4
0 1 -1 1 6
1 1 0 0 4

The current basis is {x3, x2, x4} and the associated bfs is x1 = 0, x2 = 6, x3 = 4, x4 = 4, x5 =
0, x6 = 0 with value z = 154. This bfs is optimal since the objective function reads z = 154− 4x1−
8x5 − 4x6 and therefore cannot be more than 154 due to the nonnegativity constraints.

Through a sequence of pivots, the simplex method thus goes from one linear program to another
equivalent linear program which is trivial to solve. Remember the crucial observation that a pivot
operation does not alter the feasible region.

In the above example, we have not encountered several situations that may typically occur.
First, in the min ratio test, several terms might produce the minimum. In that case, we can
arbitrarily select one of them. For example, suppose the current tableau is:
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−z x1 x2 x3 x4 x5 x6

1 16 12 -20 -90

1 0 0 1 4
1 1 -2 1 2
2 1 -2 1 4

and that x2 is entering the basis. The min ratio test gives 2 = min{2/1, 4/2} and, thus, either
x5 or x6 can leave the basis. If we decide to have x5 leave the basis, we pivot on ā22; otherwise,
we pivot on ā32. Notice that, in any case, the pivot operation creates a zero coefficient among the
RHS. For example, pivoting on ā22, we obtain:
−z x1 x2 x3 x4 x5 x6

1 -4 12 -16 -122

1 0 1 0 4
1 1 -2 1 2

-1 2 -2 1 0

A bfs with b̄i = 0 for some i is called degenerate. A linear program is nondegenerate if no bfs is
degenerate. Pivoting now on ā34 we obtain:
−z x1 x2 x3 x4 x5 x6

1 2 -4 -6 -122

1 1/2 1 -1/2 4
1 0 -1 1 2

-1/2 1 -1 1/2 0

This pivot is degenerate. A pivot on ārs is called degenerate if b̄r = 0. Notice that a degenerate
pivot alters neither the b̄i’s nor c̄0. In the example, the bfs is (4, 2, 0, 0, 0, 0) in both tableaus. We
thus observe that several bases can correspond to the same basic feasible solution.

Another situation that may occur is when xs is entering the basis, but āis ≤ 0 for i = 1, . . . ,m.
In this case, there is no term in the min ratio test. This means that, while keeping the other nonbasic
variables at their zero level, xs can take an arbitrarily large value without violating feasibility. Since
c̄s > 0, this implies that z can be made arbitrarily large. In this case, the linear program is said to
be unbounded or unbounded from above if we want to emphasize the fact that we are dealing with
a maximization problem. For example, consider the following tableau:
−z x1 x2 x3 x4 x5 x6

1 16 12 20 -90

1 0 0 -1 4
1 1 0 1 2
2 1 -2 1 8

If x4 enters the basis, we have that x1 = 4 + x4, x5 = 2 and x6 = 8 + 2x4 and, as a result, for
any nonnegative value of x4, the solution (4 + x4, 0, 0, x4, 2, 8 + 2x4) is feasible and its objective
function value is 90 + 20x4. There is thus no finite optimum.
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